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Abstract. Protein crystallography is the study of the three-dimensional structures of proteins at near
atomic resolution. It has provided a tremendous insight into the workings of numerous biological
processes over the last few decades. The field has undergone a massive worldwide expansion over
the last ten years, not only in academic laboratories, but also in the pharmaceutical industry. The main
driving force for this expansion has been the promise of using three-dimensional atomic structures of
proteins and other macromolecules to design lead drugs and to improve the action of existing drugs.

1. Introduction

The three-dimensional structures of proteins are essential for understanding protein
function and activity. Detailed knowledge of protein structures has been vital for
our understanding of numerous biological processes, from enzymatic reactions to
immune evasion by viruses. In the case of enzymes their structures have revealed
how substrates and inhibitors interact with them and has provided insight into the
mechanisms of enzyme-catalyzed reactions. Similarly, recent structures of hor-
mones, such as human growth hormone bound to its receptor, has formed the basis
for understanding how signals are passed across cellular membranes.

The major technique for determining the atomic structures of proteins has been
X-ray crystallography, although in the last decade nuclear magnetic resonance
spectroscopy has proved a powerful tool for deciphering the atomic structures of
small proteins (< 25 kDa). The discovery of X-ray crystallography and its ap-
plication for solving structures of molecules was made by Sir William Bragg and
his son, Sir Lawrence Bragg. Some of Sir William’s early work was performed
in Australia when he was Professor of Natural History (Physics of the day) at Ad-
elaide University. Sir Lawrence was born in Adelaide. Their achievements in X-ray
crystallography were recognised with the award of the Nobel Prize in 1915. Protein
crystallography can trace its origins back to 1934 when J.D. Bernal and Dorothy
Crowfoot-Hodgkin at the Cavendish Laboratory in Cambridge (U.K.) discovered
that crystals of the stomach protease pepsin yielded an X-ray diffraction pattern [1].
It was not until 1960 that the technical difficulties associated with deciphering an
atomic structure from diffraction patterns of protein crystals were met and the first
structure of a protein was published [2]. The first protein structures revealed that
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the polypeptide chain of the protein folded into a well-defined three-dimensional
structure using two major conformational elements: a coiled structure called a helix
and an extended configuration termed a beta-strand. To some, these results were a
surprise as it was predicted that proteins would have no defined structure based on
studies of non-biological polymers. Obtaining protein structures in the early days
was a very slow and painstaking effort with the result that less than a dozen protein
structures had been determined by 1970. Advances in computing and molecular
biology have dramatically speeded up the process with new protein structures now
appearing at approximately 200 per month. At the time of writing there are over
16,500 protein structures available in the Protein Data Bank [3], the depository
for models of macromolecular structures. The present collection contains a wide
variety of macromolecules including enzymes, proteins bound to DNA, integral
membrane proteins, antibody-antigen complexes and whole viruses. From its slow
birth in the sixties, protein crystallography has now matured into an exciting and
powerful technology that is still moving at an accelerating pace.

2. Crystallization

2.1. WHAT ARE CRYSTALS?

Crystals are three-dimensional periodic arrays of molecules. Unlike well-known
crystals such as diamonds and sapphires, protein crystals have the special property
that they require water as part of their structure, usually consisting about 50% of the
crystal volume. If water is removed from protein crystals they lose their periodic
order.

Crystals are required for X-ray diffraction experiments because scattering from
individual molecules is far too weak to measure. Crystals act like an amplifier
by increasing the scattering signal due to the multiple copies of molecules within
them. Typical protein crystals are about 0.2 mm in size but usable crystals have
been reported from tens of microns to a few millimeters.

The smallest repeating unit in a crystal is called the unit cell. There are 1014

such cells in a typical protein crystal with the contents of each unit cell being
identical. The unit cells must pack well together with no packing defects if they
are to be ordered enough to see useful diffraction. The unit cell is characterized
by three sides, a, b and c and three angles α, β and γ (Figure 1). There are only
seven crystal systems that are compatible with the building up of a regular crystal
lattice. At one extreme, in the triclinic system, no sides are equal (a �= b �= c) and
no angles are equivalent (α �= β �= γ ). At the other extreme, in the cubic system,
all sides are equal (a = b = c) and all angles are equal to 90◦.

Within the unit cell, the array of molecules may be described in terms of a
number of possible space groups. A space group is one of 230 groups of symmetry
operators (describing translation and rotation) that is consistent with an infinite
array of molecules in the crystal. Examples of such symmetry operators are n-fold
axes of symmetry (where n = 2, 3, 4 and 6) and mirror planes. Because amino
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Figure 1. Definitions of unit cell parameters in a crystal (after G. Kong).

acids possess chirality (i.e. handedness) there are only 65 different space group
possibilities for proteins as mirror planes and centers of inversion are not possible.
The crystallographic symmetry within the unit cell can operate on one or more
molecules that are collectively called the asymmetric unit of the crystal. In turn,
where there is more than one molecule within the asymmetric unit, they might be
related by local (or non-crystallographic) symmetry.

2.2. GROWING CRYSTALS

Proteins can be made to crystallize by the addition of certain precipitants such
as salts and organic solvents, most commonly ammonium sulfate or polyethylene
glycol, under usually precise conditions of pH, temperature and protein concen-
tration. Protein crystallization is very complicated and considered a difficult art
by its practitioners [4]. Many factors can influence successful crystallization in-
cluding protein and precipitant concentrations, ionic strength, vibration, protein
flexibility, protein purity, small molecule additives, temperature and so on. The de-
tailed physics behind crystallization are not well understood. The process is usually
considered in terms of phase diagrams where the vertical axis corresponds to the
protein solubility and the horizontal axis refers to some experimental parameter
such as pH or precipitant concentration (Figure 2). Consider the behavior of a typ-
ical protein solution. At low protein and precipitant concentrations the protein stays
in solution (i.e. it is undersaturated). As the concentration of protein or precipitant
increases the protein becomes less soluble until supersaturation occurs whereby the
protein comes out of solution as either an aggregated mess (amorphous precipitate)
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Figure 2. Phase diagram for crystallization.

or as ordered crystals. The zone in which crystals form is called the nucleation zone
and the zone in which crystals grow is the metastable zone.

3. Diffraction Theory

3.1. INTRODUCTION

Small objects in the millimeter range are normally visualized using light micro-
scopes where visible light, scattered from the object of interest, is collected and
focused using the objective lens of the microscope. In order to visualize structures
at the atomic scale it is necessary to work with electromagnetic radiation with
wavelengths of the order of atomic bond distances (approximately 1 Å or 10−10

meters). X-rays have such suitable wavelengths. X-ray diffraction – the interfer-
ence between waves scattered from individual atoms in a crystal – can be used
to determine atomic structures. However, there are no lenses available to bend
and focus the scattered X-rays. Instead atomic structures must be reconstructed
using diffraction theory from the intensities of the diffracted waves which can be
measured experimentally.

When X-rays impinge upon free electrons, the fluctuating electromagnetic field
of the incident wave forces the electrons into oscillations of the same frequency as
the incident wave. This oscillation results in the generation of secondary radiation
of the same wavelength of the incident ray, but out of phase by 180◦. This is called
coherent or elastic scattering. Periodic waves can be defined by three parameters:
the wavelength (λ), the amplitude and the phase (Figure 3).

The periodic wave can be expressed mathematically by:

F = |F|exp(iφ) (1)
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Figure 3. Diffraction from a molecule. A molecule is located in a two-dimensional unit cell.
Each atom is shown by a sphere with diameter proportional to the number of electrons in the
atom. X-rays are shone at the molecule in the direction indicated by the vector so. X-ray waves
are scattered from each atom. The distance between wave crests is the wavelength, λ, and the
amplitude, F, is the difference between the peak height and the average displacement of the
wave. The phase difference, φ, between two waves is shown. Imaginary Bragg planes (see
below) are also indicated by the parallel straight lines separated by distance d.

Where the magnitude of F is the amplitude and φ is the phase with values between
0◦ and 360◦ (reflecting the periodic nature of waves).

Referring to Figure 4, the path difference between an X-ray scattered at some
point P relative to that scattered by an electron at the origin is

r.so – r.s (2)

where r is the vector distance of P from the origin and so and s represent the vectors
of the incident and scattered rays respectively. If we choose the modulus of so and
s to be 1/λ, then the phase difference is given by 2πr.S where S is the vector
difference between the incident and scattered waves. The vector S is called the
scattering vector and is used to describe the position in diffraction space.

If we consider the lattice to be made up of atoms rather than electrons, we must
consider the total wave scattered by the partial volume of the atom, dv, and then
sum up these individual contributions over the volume of the atom. The phase of
a wave scattered scattered from dv, relative to a point at a defined origin, depends
critically on the position r as well as on the wave vector direction, s, in relation to
the incident wave vector direction, so (Figure 4). Thus diffraction from the scattered
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Figure 4. Scattering at a point P relative to an origin O and the relationship of the diffraction
space vector S to the real space vectors so and s.

waves provides information about where atoms are located in the unit cell of a
crystal, ie. diffraction depends on the atomic structure within the unit cell.

The total scattered wave, made up of scattering contributions from all the volume
elements of the scattered object is given by the Fourier transform equation:

F(S) =
∫
V

∫
ρ(r)exp(2π ir.S)dv (3)

where the amplitude is proportional to ρ(r)dv and the phase is 2πr.S The function
F(S) is referred to as the atomic scattering factor and is usually denoted by the
symbol f. For electron-rich atoms the amplitude of the scattered wave is much
greater than an atom with few surrounding electrons (Figure 3). The total wave
scattered by a molecule of N atoms can be derived from vector addition of the
atomic contributions:

G(S) =
∑

j=1,N fj exp(2π irj .S) (4)

where G(S) is the molecular transform.
Diffraction patterns from protein crystals are characterized by diffraction max-

ima (referred to as spots or reflections) located on a periodic three dimensional grid
(Figure 5). The location of any particular spot can be defined by three indices (h,
k and l), sometimes referred to as the Miller indices of the diffraction spot. The
origin of the grid is defined by the direction of the initial or primary beam, the
majority of which passes through the crystal without being scattered. Because the
distance between two adjacent spots in a row or column is inversely proportional
to the unit cell dimensions, the diffraction patterns are commonly referred to as
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Figure 5. A diffraction pattern from a protein crystal. The direct (or primary) X-ray beam
passes through the center of the picture and it defines the origin of the lattice. Because exposing
the primary beam on a detector is not healthy for the instrument, it is routine to insert a piece
of lead (the so-called backstop) between crystal and detector. The backstop and its holder are
seen as the shadow in the picture. Each diffraction spot can be labeled with its own Miller
indices, h, k and l. The symmetry observable in the diffraction pattern is due the space group
of the crystals. The further the distance of spots from the center of the pattern, the higher the
resolution.

‘reciprocal space’ as distinct from the real space of the electron density image that
results from diffraction analysis.

If we define r in Figure 4 in terms of the unit cell vectors a, b and c, then the
phase differences for a scattered beam of maximum intensity are

2π (a.S) = 2πh; 2π (b.S) = 2πk; 2π (c.S) = 2π l (5)

where integers h, k and l are the Miller indices. The reciprocal lattice vector S can
be given as:

S = ha∗ + kb∗ + lc∗ (6)

where a∗, b∗ and c∗ are the lattice constants of the diffraction lattice. We can obtain
the scattering equation for the crystal by combining the equation expressing the
fractional coordinates of the jth atom in terms of the lattice vectors:

rj = axj + byj+ czj (7)

with the equations (2d) so that
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rj .S = xj .a.S + yj .b.S + zj .c.S
= hxj + kyj + lzj (8)

If the volume of integration given in equation (3) corresponds to the unit cell of the
crystal, the values obtained at integral values of S(h,k,l) are directly proportional
to those of the whole crystal:

Fh,k,l =
∑

j=1,natoms fj exp(-Bj (sinθ /λ)2
h,k,l). exp{2π i(hxj + kyj + lzj )} (9)

where the summation is over all the atoms in the unit cell, each atom having an
atomic scattering factor, f, and an atomic mobility factor, B, associated with it.
The B-factor (sometimes referred to as the temperature factor) is related to atomic
displacement, û, by the equation:

B = 8π2û2 (10)

Temperature factors have units of Å2 with values typically less than 20 Å2 in the
core of the protein and values greater than 60 Å2 on the protein surface.

The structure factor equation (9) represents the molecular transform sampled at
each reciprocal lattice point. The structure factor is directly related to the experi-
mentally determined intensity of each diffraction spot by:

Ih,k,l = C |Fh,k,l |2 (11)

where C is a proportionality factor that depends on various experimental factors.

3.2. BRAGG’S LAW

Bragg showed that if the diffraction from a crystal was considred as reflections
from imaginary planes of atoms within the crystal then a equation could be for-
mulated to predict where diffraction maxima would occur in a diffraction pattern.
Consider a pair of parallel X-rays striking a pair of horizontal parallel planes as
shown in Figure 6.

The parallel rays hit the planes in phase but the lower ray has a longer dis-
tance to travel than the upper one by the time they are both reflected. By simple
trigonometry (see Figure 6) it can be shown that

nλ = 2dsinθ (12)

The Bragg relationship shows that constructive interference of the waves will only
occur when the path difference is some multiple of the wavelength, λ.

3.3. EWALD CONSTRUCTION

Another way of expressing Bragg’s law is through the Ewald construction. In this
construction a sphere with center at the crystal (C) of radius 1/λ is placed on a



PROTEIN STRUCTURE FROM X-RAY DIFFRACTION 349

Figure 6. Bragg’s Law of reflection. The arrows indicate the electromagnetic waves that are
reflected from a pair of parallel planes separated by distance d. The dashed line with one end at
B is a normal to these planes. The bottom wave travels an extra distance, i.e. a path difference
of AB + BC, and if it is to be in constructive interference with the top wave, AB + BC needs to
be an integer multiple of the wavelength λ of the wave. Since the waves are parallel, OA and
OC are perpendicular to AB and BC respectively, and by simple geometry, AB = BC = dsinθ .
Hence, for the constructive addition of the waves, AB + BC = 2dsinθ = nλ. The amplitude of
the reflected wave will depend on the electron density at the point of diffraction.

reciprocal lattice so that a point on the surface of the sphere intersects the origin
(O) of the lattice. The vector BCO represents the incident beam. The condition
that a particular ray, OP’, is a diffracted ray may be expressed as: X-rays will be
diffracted in the direction OP’ if the point P’ represents a reciprocal lattice point ie.
the vector P’O is a reciprocal lattice vector S =ha∗ + kb∗ + lc∗. As the sphere moves
about the lattice, a reflection is only observed when the surface hits a reciprocal
lattice point.

4. X-Ray Sources

4.1. X-RAY GENERATORS

X-rays are produced when a beam of high energy electrons, which have been
accelerated through a voltage in a vacuum, strike a target. In the simplest device
called the sealed tube, X-rays can be generated by allowing an electric current
to run through a filament that is kept under vacuum in the sealed tube. Electrons
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a

b

Figure 7. Reflection in reciprocal space for a two-dimensional case. (a) When P falls onto the
Ewald sphere (depicted by the circle), reflection occurs as both the law of reflection (incident
angle is equal to angle of diffraction) and Bragg’s Law are satisfied. The line through C acts
as the plane of reflection. (b) As the crystal is rotated, so is the reciprocal space lattice. This
brings other reciprocal lattice points, such as P’, to the Ewald sphere and equivalently, a new
set of planes into a position for reflection. When a reciprocal space vector, OP or OP’, falls
onto the sphere, the reflection (diffraction) is recorded (after G. Kong).



PROTEIN STRUCTURE FROM X-RAY DIFFRACTION 351

are made to accelerate, via an applied voltage, from the filament towards a target,
usually made of copper or molybdenum, causing X-rays to be emitted from the
target. Only a fraction of the energy of the electrons is converted into X-rays with
the remainder being dissipated as heat. More intense X-rays can be generated if
the target or anode is allowed to rotate fast so that the heat caused by the firing of
electrons at it is more rapidly dissipated. So-called rotating anode generators are
the X-ray source of choice for protein crystallography laboratories.

X-rays can damage crystals through heating effects and/or the formation of
free radicals that can transmit their damaging effects through the solvent chan-
nels that run through protein crystals. The effects of X-ray damage can be lim-
ited by flash-freezing crystals to about 100 K using a nitrogen stream. So-called
cryocrystallography is now the norm for most crystallographic projects.

4.2. SYNCHROTRON SOURCES

For an even more intense source of X-rays, protein crystallographers will often
travel to a synchrotron facility. In a synchrotron facility electron (or positrons)
are accelerated close to the speed of light by a linear accelerator before being
injected into a synchrotron ring where the electrons are kept in a circular orbit
through the use of high energy magnets. As the electrons circle around the ring they
emit electromagnetic energy at a tangent to their orbit and this energy is funneled
down beamlines. Optical elements such as monochromators can be used to select
wavelengths of interest.

Synchrotron radiation is particularly useful in obtaining diffraction patterns
from very small crystals and also for collecting very high quality diffraction data.
Unlike home sources, the wavelength of the X-rays can be varied readily which
can be very useful in determining the structure of the protein from the diffraction
pattern (see below).

4.3. DETECTORS

The original detectors were film but more accurate and less cumbersome meth-
ods were subsequently developed. These developments included multi-wire pro-
portional counters, television area detectors and more recently charged coupled
devices. In the last decade film has made a comeback in the form of reusable image
plates. These plates store X-ray intensities as latent images in the form of color
centers. These are metastable states of trapped electrons in a BaFBr:Eu2+ phosphor.
The stored image can be read out by scanning the plate with a red He-Ne laser
light. The resulting blue stimulated luminescence has an intensity proportional to
the number of absorbed X-rays.

Because diffraction patterns often possess symmetry due to the space group of
the crystals (see Figure 5), symmetry equivalent reflections are measured during
the process of data collection. In addition, the same reflection may be measured
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more than once if more data is collected than required to compile a unique set.
Measuring multiple copies of reflections is very useful in increasing the precision
of data collection and can also be used to calculate a measure of the quality of the
data set:

Rmerge =
∑
hkl

N∑
i=1

|Ī (hkl) − I (hkl)i|
∑
hkl

N∑
i=1

I (hkl)i

(13)

where Rmerge (sometimes called Rsym) is the residual factor, I(hkl)i is the i’th meas-
urement of reflection with Miller indices h,k,l, and is the mean value of the N
equivalent reflections. The Rmerge value is typically between 3% and 10%. Sources
of error include radiation damage to the crystal during data collection, different
absorption properties as the protein is rotated in the X-ray beam, measurements
from multiple crystals, and errors inherent in the area detector measurements.

5. The Phase Problem

5.1. INTRODUCTION

The structure factor is the Fourier transform of the contents of the unit cell sampled
at reciprocal lattice points h, k and l. Because of the wave nature of X-rays, the
structure factors have a phase, φ, relative to the origin of the unit cell. Remember
that the experimentally determined measurements are intensities for each reflec-
tion, h, k and l and the structure factor for each reflection can be determined by
equation (11). However, structure factors are complex variables:

Fh,k,l = |Fh,k,l | exp (iφ) (14)

Hence, only the magnitude, and not the phase, can be extracted from the intensity
measurements.

The electron density, ρ, and hence the atomic coordinates of a protein molecule
can be determined by performing the inverse Fourier transform of equation (3):

ρ(xyz) = 1

Vc

∑

h

∑

k

∑

l

|F(hkl)|eiα(hkl)e−2πi(hx+ky+lz) (15)

where Vc is the volume of the unit cell, |F(hkl)| is the structure factor of a reflection
with Miller indices h, k and l, and α(hkl) is the relative phase of the reflection.

The central challenge in determining protein structures from diffraction patterns
lies in the ability to overcome the problem of determining phases for each measured
reflection. The major methods of solving the phase problem are outlined in the next
few sections.
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5.2. MULTIPLE ISOMORPHOUS REPLACEMENT

This was the method used to determined the first protein structures and still contin-
ues to be a major method for solving protein structures where no similar structures
are already known. In this method the diffraction pattern is measured from crys-
tals of the native protein. Other crystals are soaked in heavy atom solutions and
diffraction patterns measured from these crystals as well. Heavy atoms are defined
as atoms with sufficient enough electrons around them so they cause a measurable
change in the diffraction pattern of the native protein. In practice this usually means
choosing atoms such as platinum, uranium, lead, gold and the lanthanides. The
‘multiple’ in multiple isomorphous replacement (MIR) refers to the fact that at least
two different heavy atom data sets must be measured for the method to work. The
‘isomorphous’ in MIR refers to the fact that ideally the only difference between the
diffraction patterns of the native and heavy atom-soaked crystals should be due the
heavy atoms. Thus the heavy atoms should bind to the protein in an isomorphous
fashion so that they don’t disturb any atoms of the protein. The ‘replacement’ in
MIR is a misnomer and a better description would be ‘addition’.

The choice of heavy atoms is an art within itself. There are generally two types
of heavy atoms: those that are soft and polarisable and which form covalent bonds
with protein ligands (examples include mercury, platinum and gold) and those that
tend to bind to hard ligands and form ionic interactions (examples include the
uranyls and lathanides). The chemical reactivity of heavy atoms can be modified
by judicious choice of ligands (e.g. chloride ligands are readily displaced whereas
cyanide ligands will remain bound), soak times, heavy atom concentrations, pH
and temperature. The most popular heavy atom family are the mercurials which
bind covalently to accessible cysteine residues of proteins.

The typical difference between diffraction patterns of the native and heavy atom
derivative is between 10 and 30%. Smaller differences might cause difficulty in
locating heavy atom positions and the resulting phases will have large errors as-
sociated with them. On the other hand very large differences could be a sign of
non-isomorphism.

Heavy atom positions in the unit cell are most commonly located using the
Patterson synthesis. The general formulation of the Patterson function is a map
made from the summation of a Fourier series that has the square of the structure
factor amplitudes as coefficients:

P(uvw) = 1

Vc

∑

h

∑

k

∑

l

F(hkl)2e−2πi(hx+ky+lz) (16)

where u, v and w represent grid units in the Patterson map. A Patterson map is a
vector map where peaks represent vectors between heavy atoms (Figure 8).

Protein phases are readily estimated once the heavy atom positions have been
located. With reference to Figure 9, vector addition of the scattering factors for
individual atoms will give the overall structure factor FP. Because heavy atoms
are electron-rich, their vectors are much longer than vectors due to lighter atoms.
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Figure 8. Patterson maps. On the left hand side is a molecule placed in a two dimensional unit
cell. On the right hand side is the vector or Patterson map of the molecule.

Figure 9. Vector representation of structure factors. On the left hand side the atomic scattering
factors of each atom add up to give the overall structure factor, FP (P is for protein), for a
particular reflection with phase α. On the right hand side a heavy atom structure factor, FH,
with its phase αH, is shown.

Because there are many small vectors due to light atoms in a protein, their vector
addition follows a short-stepped random walk. Hence there is a reasonable prob-
ability that the angular difference between FH (H is heavy atom) and FPH (PH is
protein plus heavy atom) is small and even higher probability that the heavy atom
phase (calculated via equation (15)) and protein plus heavy atom phase lie in the
same quadrant. Thus the heavy atom phase may be used as a first approximation to
the true phase, αPH.

Figure 10 shows vector constructions, called Harker constructions, which are
helpful in explaining the heavy atom method. A circle of radius FPH is drawn with
center –FH so that

FP = FPH – FH (17)
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Figure 10. Harker constructions demonstrating the heavy atom method. (a) Phase circles are
drawn for native and for a single heavy atom. The circles intersect at two points yielding
two possible phase solutions. (b) A unique phase solution is obtained in the case of two
independent heavy atom derivatives.

Note that FPH lies somewhere on the circle. We can now draw a circle with radius
FP as in Figure 10. Note that equation (17) only holds where the two circles interact
and that there are generally two possible solutions. Hence another piece of phase
information is required to find an unique solution. This information may come via
a second heavy atom derivative (Figure 10b) or other ways (see below).

The heavy atom method is not without its problems. Poor isomorphism, lack of
heavy atom binding and inability to locate of heavy atom sites in the unit cell are
commonly met problems.

5.3. MULTI-WAVELENGTH ANOMALOUS SCATTERING

Previously we have assumed that X-rays scatter elastically from the electron clouds
around atoms. However, if X-rays interact with more firmly bound inner electrons
then there will be a change in energy of the transmitted wave. Anomalous scat-
tering arises when the energy of the incident radiation is close to the resonant
frequency of the tightly bound inner shell electrons. The atomic scattering factor
of an anomalous scatterer is given as:

fλ = fo + 	f′λ + i	f′′λ (18)

where the 	f′λ component is referred to as the dispersion component and i	f′′λ
component is the absorption or imaginary component because it lags π /2 behind
the primary wave. Close to an absorption edge the dispersion component decreases
rapidly whilst the absorption component becomes large (Figure 11). The change
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Figure 11. Anomalous scattering factors for a selenomethionine labeled protein. The Se K
edge occurs at 12.66 eV (λ = 0.98 Å).

in the diffraction pattern from an anomalous scatterer is usually much smaller
(a few percent) than that from the addition of a heavy atom so the data must be
measured carefully. Synchrotron radiation has revolutionized the use of anomal-
ous scattering in solving protein structures because of the ability to finely tune
wavelengths of X-rays near absorption edges to extract as much signal as possible.
Most protein atoms, such as carbon, nitrogen and oxygen, do not have significant
anomalous scattering effects in the range of wavelengths that are normally used in
X-ray experiments. The most useful atoms are sulfur and metal centers located in
metalloproteins. However, by far the most useful element has proved to be selenium
which can be incorporated into methionine residues by expressing the protein of
interest in the appropriate media enriched for selenomethionine.

In the multi-wavelength anomalous dispersion (MAD) method, data sets are
collected from the one crystal at a minimum of three different wavelengths in order
to maximize the differences in the real and imaginary components of the anomalous
scattering: remote from the absorption edge, at the edge and at the peak. Since the
intensities of the diffraction patterns differ it is possible to locate the positions of
the anomalous scatters in the unit cell and derive phases from the information using
the same techniques used in the heavy atom method.
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5.4. MOLECULAR REPLACEMENT

This is conceptually the simplest technique for determining phases and the tech-
nique likely to be used to solve most protein structures in the future. If the target
protein possesses a similar amino acid sequence (approximately more than 25%
pairwise sequence identity) to one for which a structure is already known, then
good starting phases can be derived by simply placing the known structure in
the correct orientation and position in the unit cell of the unknown protein and
calculated phases using equation (15). The correct orientation and position can be
determined by placing the probe molecule in the unit cell and calculating its the-
oretical diffraction pattern using equation (15). The probe molecule is then moved
until the experimental and theoretical patterns match. Six dimensional searches
(three angles and three translations) are prohibitively expensive to compute so the
problem is normally broken up into two searches: a rotation search followed by a
translation search. The most common method of searching makes use of Patterson
functions so that vector maps are calculated from search and probe molecules and
superimposed to find overlaps of vectors.

6. Electron Density Maps

6.1. RESOLUTION

From Bragg’s equation (equation (12)), it can be seen that as the scattering angle
increases, the separation of reflecting planes is decreasing and hence scattering ob-
jects that are close together in space can be resolved. Thus the further the diffraction
pattern extends from the position of the incident or primary beam, the higher the
resolution of the structure that will be determined (Figure 5). Since X-rays interact
with the electron cloud around atoms, the experimentally derived image is in the
form of an electron density map. The interpretation of the map is performed using
specialist software on a computer graphics workstation. At low resolution (8 to 3.5
Å) the overall shape of the molecule can be seen and helices can be observed as
rods of high electron density. At medium resolution (3.5 to 2.5 Å) amino acid side-
chains can be identified and the polypeptide chain can be traced. At high resolution
(2.5 to 1.0 Å) individual atoms can be located and well-ordered solvent structure
around the protein observed. Hydrogen atoms scatter too weakly to be normally
observable except at the very highest resolutions.

6.2. DENSITY MODIFICATION

No matter which method is used to solve the phase problem, they all suffer from the
fact that the phase values are only estimates and have significant errors associated
with them. There are a number of powerful tools available in order to improve the
phase estimates and hence the quality of the resultant electron density map. Most
of these methods work in real space: the electron density is modified using some
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prior knowledge and a new set of phases estimated using equation (15). The most
common density modification technique is solvent flattening: in the ideal situation
the solvent regions in the unit cell should have uniform electron density but most
often these regions are not flat in the initial electron density map due to random
noise from errors in the phase and amplitude estimates. In such cases the solvent
regions are flattened and new phases calculated. One of the most powerful density
modification tools is non-crystallographic symmetry averaging which can be ex-
ploited in cases where there is more than one copy of a molecule in the asymmetric
unit of the unit cell. In this case equivalent molecules can be identified in the initial
electron density map and densities of them averaged to produce a much better set
of phases via equation (15).

7. Refinement

The aim of model building is to produce a model that agrees with the experiment-
ally measured diffraction patterns as closely as possibly. This is often expressed in
the form of the following equation:

Rfactor =
∑
hkl

|Fo(hkl) − Fc(hkl)|
∑
hkl

Fo(hkl)
(19)

where Rfactor is the conventional residual factor, Fo are the experimentally measured
structure factors and Fc are the structure factors calculated from the latest model
via equation (15). Models can be improved by varying the position, x, y and z,
and mobility, B, of each atom in order to minimize the residual by least squares
methods. Because the number of observations (i.e. the structure factors) are barely
more than the number of refinable parameters (atomic positions and temperature
factor), then the least squares refinement is poorly determined. This problem is
overcome by the incorporation of stereochemical restraints such as bond lengths
and angles that are known quite accurately from measurements of small molecule
crystal structures.

The non-linear nature of the least squares refinement means that a number of
rounds of model building and refinement are required in order to achieve the radius
of convergence. A very powerful revolution in the refinement of crystal structures
has been the use of restrained molecular dynamics refinement where individual
atoms are moved according to Newton’s laws of motion using high temperatures
of, for example, 3000 K. This has the effect of overcoming atoms being trapped
in local minima and hence speeds up the model building/refinement process. The
energy function used in crystallographic refinement is:

Etotal = Eempirical + Eeffective (20)

The Eempirical term in equation (13) implements geometric and other restraints:
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Eempirical = Ebond + Eangle + Edihedral + Eimproper + Evdw + . . . (21)

In the above equation, Ebond, Eangle, Edihedral, Eimproper, and Evdw represent energies
resulting from deviations from ideal bond lengths, bond angles, dihedral angles (for
optimizing torsion angles), improper angles (for optimizing planar groups such as
benzene rings and peptide bonds), and van der Waals contacts respectively. For
example, the bond energy is calculated as:

Ebond =
∑

bonds

kb(r − ro)
2 (22)

where r is the bond length, ro is the ideal bond length and kb is the energy constant.
The ‘ideal’ geometry parameters are derived from observations of small molecule
structures of amino acids. The Eeffective component in the overall energy equation
(20) represents pseudo-energy terms calculated from structural information such
as the reflection data, non-crystallographic symmetry restraints, etc. The effective
energy derived from the difference between Fo and Fc is represented by Exref.

Exref = WA

∑

hkl

w(hkl)[|Fo(hkl)| − k|Fc(hkl)|]2 (23)

where WA is an overall weight, k is an overall scale factor, and w(hkl) is a weight
applied to individual reflections. Thus the crystallography discrepancy term (i.e.
numerator of equation (19)) is incorporated into molecular dynamics refinement as
a pseudoenergy term.

8. Structure Validation

The typical conventional R-factor for protein models is between 15% and 25%
which can be compared to values of less than 5% for small molecule crystal struc-
tures. Why the difference? Firstly, the upper resolution limit of the diffraction
pattern from protein crystals is nearly always poorer than those of small molecules
because of poorer quality crystals and poorer signal-to-noise in the diffraction pat-
tern. Hence many features of a protein structure are poorly modeled. For example,
it is rare to see more than the first shell of ordered water molecules around a
protein molecule and the solvent regions are crudely modeled by simple math-
ematical equations. In nearly all cases the temperature factors of each atom are
modeled isotropically rather than anisotropically which would be more realistic.
Anisotropic B-factor refinement means more refinable parameters per atom but
there are rarely enough observations to be able to perform such refinement. Very
high resolution crystal structures of proteins show that a significant proportion of
surface side-chains adopt more than one conformational state but this cannot be
modeled for most protein structures. The relatively poor agreement between model
and experiment can lead to a number of errors that must be looked at carefully as
model refinement approaches convergence. For example, since model stereochem-
ical parameters are used as restraints, rather than constraints (i.e. fixed values) in
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Figure 12. The Ramachandran plot. Favorable areas of the plot are highlighted by the dark
gray areas.

the refinement process, they must be checked carefully that they have been allowed
to vary within sensible limits. A good model will have bond length deviations less
than 0.02 Å and bond angle deviations less than 2.5◦. One of the most powerful
checks is the Ramachandran or phi-psi plot which is a plot of the main-chain di-
hedral angles along the polypeptide chain (Figure 12). Because of steric restraints,
the conformational space that can be adopted by these angles are restricted. Phi and
psi angles are not used as restraints in refinement programs and hence their quality
are independent checks of the model quality.

A much more serious issue must be examined for any new protein structure – is
the model indeed correct? Unfortunately, there are a handful of published protein
structures that have proved to be partially or even totally wrong. The most common
causes have been incorrect space group assignment and/or over interpretation of a
poor quality electron density map. In one case a protein was actually built back-the-
front so the C-terminus ended up where the N-terminus of the protein should have
been. In these sort of cases it is possible that the incorrect model can be refined to
what look like sensible conventional R-factors. One of the most powerful tools to
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guard against incorrect model building is the free R-factor. In this method, a small
percentage of reflections (usually 5–10%) are quarantined from the refinement
process. The so-called free R-factor, calculating according to equation (19) using
only the quarantined reflections, is monitored throughout the refinement process.
Decreases indicate correct model building decisions whereas increases suggest the
model is being built wrong. A decrease in the conventional R-factor at the expense
of an increase in the free R-factor is diagnostic that the model is being overfitted,
ie. the large number of refinable parameters is sufficient to cause an improvement
in the agreement between the calculated and experimental diffraction patterns even
though the calculated model resembles the correct structure much less. Another
powerful tool is one based on the expected three-dimensional environment of each
of the twenty different amino acids. For example, charged residues normally are
located on the surface of a protein and rarely in the protein core. This method,
sometimes called 3D–1D profiles [5], determines how well the environment of each
residue in the model agrees with what has been observed for correctly built protein
models. Poor fits are diagnostic of problem regions in the model. Another powerful
tool for structure validation is the Ramachandran plot: many wrongly built models
have tended to exhibit almost random distributions in phi-psi plots. Other checks
include sensible location of heavy atom sites, correct handedness of helices and
sheet, sensible temperature factor trends (e.g. buried residues should have lower B
factors than surface residues) and buried charge groups should have their charges
dissipated through salt bridges or multiple hydrogen bonding interactions

9. Applications of Protein Crystallography – Rational Drug Design

In the past, the majority of drug discoveries have been based on astute but serendip-
itous observations or by large screening programs of synthetic and natural products.
Advances in molecular biology and protein crystallography have yielded a much
more promising method termed rational or structure-based drug design (SBDD).
Decades of research have demonstrated that proteins are the site of action for
most drugs and hence are the target for the development of new drugs. In SBDD
key proteins are identified (for example, by genetic studies or DNA microarrays),
crystallised and their crystal structures determined. Through the use of interactive
computer graphics and molecular modeling software, it is possible to design po-
tential drugs on the basis that good inhibitors must possess significant structural
and chemical complementarity to their therapeutic target. The SBDD methodology
requires an iterative procedure in which compounds are designed, synthesised and
crystal structures of the protein-drug complexes are then determined to test the
modelling predictions. Successful examples of this approach include the currently
used cocktail of HIV protease inhibitors against AIDS [6], thymidylate synthase
inhibitors against cancer [7] and neuraminidase inhibitors against influenza [8].
In the case of thymidylate synthase inhibitors, more than 100 enzyme-inhibitor
complex structures were solved [9].
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10. Applications of Protein Crystallography – Functional Genomics

One of the greatest scientific endeavors, the Human Genome Project, has recently
been bought to fruition with an estimate that the human genome encodes about
30,000 different proteins [10]. However, the functions of only about one third of
these proteins are known with any certainty. Biologists are now embarking on the
next big challenge: to decipher the function of all proteins in the human body.
This new endeavor, coined by the term functional genomics, is utilizing a variety
of powerful tools including X-ray crystallography. It has been argued by advocates
that because the function of a protein is encoded by its three-dimensional structure,
then structures will lead to a knowledge of protein function. At a practical level all
new protein structures are compared to known structures deposited in the Protein
Data Bank [3]. Similarities lead to hypotheses that can then be tested by biological
assays. Because of the large number of protein structures that need to be determined
from many different genome projects, there is a pressing need to speed up the
process of solving structures from the current time of a few months. Such research,
commonly referred to as structural genomics, is likely to lead to major techno-
logical improvements in the coming years. These include crystallization robots,
automatic crystal mounting at synchrotrons and automated interpretation of elec-
tron density maps. The eventual hope is that protein structures will be determined
in a matter of hours rather than the many months it takes at present.
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